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Abstract 12 

Deep convection possesses markedly distinct properties at different spatiotemporal scales. We 13 

present an original high-resolution (4 km, hourly) unified data product of mesoscale convective 14 

systems (MCSs) and isolated deep convection (IDC) in the United States east of the Rocky 15 

Mountains and examine their climatological characteristics from 2004 to 2017. The data product 16 

is produced by applying an updated FLEXTRKR (Flexible Object Tracker) algorithm to hourly 17 

satellite brightness temperature, radar reflectivity, and precipitation datasets. Analysis of the data 18 

product shows that MCSs are much larger and longer-lasting than IDC, but IDC occurs about 19 

100 times more frequently than MCSs, with a mean convective intensity comparable to that of 20 

MCSs. Hence both MCS and IDC are essential contributors to precipitation east of the Rocky 21 

Mountains, although their precipitation shows significantly different spatiotemporal 22 

characteristics. IDC precipitation concentrates in summer in the Southeast with a peak in the late 23 

afternoon, while MCS precipitation is significant in all seasons, especially for spring and 24 

summer in the Great Plains. The spatial distribution of MCS precipitation amounts varies by 25 

seasons, while diurnally, MCS precipitation generally peaks during nighttime except in the 26 

Southeast. Potential uncertainties and limitations of the data product are also discussed. The data 27 

product is useful for investigating the atmospheric environments and physical processes 28 

associated with different types of convective systems, quantifying the impacts of convection on 29 

hydrology, atmospheric chemistry, and severe weather events, and evaluating and improving the 30 

representation of convective processes in weather and climate models. The data product is 31 

available at http://dx.doi.org/10.25584/1632005 (Li et al., 2020).32 
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1 Introduction 33 

In the atmosphere, deep convection refers to thermally driven turbulent mixing that 34 

displaces air parcels from the lower atmosphere to the troposphere above 500 hPa (Davison, 35 

1999), leading to the development of convective storms. The heavy rain-rates associated with 36 

deep convection can significantly affect the water cycle (Hu et al., 2020) and other aspects such 37 

as soil erosion (Nearing et al., 2004), surface water quality (Carpenter et al., 2018; Motew et al., 38 

2018), and managed and unmanaged ecosystems (Angel et al., 2005; Derbile and Kasei, 2012; 39 

Rosenzweig et al., 2002) that are essential elements of the biogeochemical cycle. By 40 

redistributing heat, mass, and momentum within the atmosphere, deep convection also has 41 

important effects on atmospheric chemistry (Anderson et al., 2017; Andreae et al., 2001; Choi et 42 

al., 2014; Grewe, 2007; Thompson et al., 1997; Twohy et al., 2002), large-scale environments 43 

(Houze Jr, 2004; Piani et al., 2000; Stensrud, 1996, 2013; Wang, 2003), and radiation balance 44 

(Feng et al., 2011; Zhang et al., 2017). 45 

Besides its effects on the energy, water, and biogeochemical cycles, deep convection also 46 

has more direct societal impacts. As a significant source of natural hazards such as tornadoes, 47 

hail, wind gusts, lightning, and flash flooding, deep convection poses critical threats to human 48 

life and property (Doswell III et al., 1996). During 1950 – 1994, deep convection associated 49 

thunderstorms produced 47% of annual rainfall and up to 72% of summer rainfall on average 50 

east of the Rocky Mountains (Changnon, 2001b). During the same period, both the number of 51 

severe thunderstorms and deep convection precipitation has increased in most regions of the 52 

contiguous United States (CONUS) (Changnon, 2001a, b; Groisman et al., 2004). Folger and 53 

Reed (2013) found that hazards associated with thunderstorms accounted for 57% of annual 54 
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insured catastrophe losses since 1953. Since the 1980s, the inflation-adjusted economic losses 55 

due to convective storms increased from about $5 billion to about $20 billion in the recent 56 

decade (https://www.iii.org/fact-statistic/facts-statistics-tornadoes-and-thunderstorms). With 57 

warmer temperatures, the environments of hazardous convective weather are projected to 58 

become more frequent in the future (Diffenbaugh et al., 2013; Seeley and Romps, 2015), 59 

although few robust trends have emerged in the recent decades (Houze Jr et al., 2019; Tippett et 60 

al., 2015). 61 

The crucial roles of deep convection motivate the need for more accurate and 62 

comprehensive datasets of deep convection to improve understanding and modeling of this 63 

process and its impacts. To this end, datasets with information on the location and time of 64 

occurrence, intensity, and other properties of deep convection are necessary to understand and 65 

quantify its impacts on the hydrologic cycle, severe weather hazards, large-scale circulations, etc. 66 

While field campaign data can provide detailed information on deep convection properties, they 67 

are limited in space-time coverage for statistical analysis. A reliable long-term dataset of deep 68 

convection is undoubtedly useful for model evaluation and development (Prein et al., 2017; 69 

Yang et al., 2017). 70 

Deep convection can exist as isolated convective storms or organized storms with 71 

mesoscale structures. A mesoscale convective system (MCS) is an aggregate of convective 72 

storms organized into a larger and longer-lived system, which is the largest type of deep 73 

convection. Due to their much longer duration and broader spatial coverage, MCSs generally 74 

have stronger and longer-lasting influences on large-scale circulations than isolated deep 75 

convection (IDC) events (Stensrud, 1996, 2013). MCSs can also produce higher rain rates, larger 76 
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echo top heights, and greater water and ice masses than IDC (Rowe et al., 2011, 2012). The 77 

enhanced rain rates in MCSs might be caused by larger amounts of ice falling out and melting, 78 

higher amounts of liquid water below the melting level, and higher concentrations of smaller 79 

drops (Rowe et al., 2011, 2012). Compared to IDC, MCSs tend to occur in more favorable 80 

environmental conditions, such as higher convective available potential energy (CAPE) and wind 81 

shear (French and Parker, 2008), potentially making them more conducive to hazardous weather. 82 

Considering the significant differences between IDC and MCS events, a reliable long-term 83 

dataset not only describing the characteristics of deep convection but also separating IDC events 84 

from MCSs is useful. With the deployment of operational remote sensing platforms such as 85 

geostationary satellites and ground-based radar network several decades ago, scientists have 86 

developed numerical algorithms to automatically detect deep convective systems and track their 87 

evolutions over large areas and for long durations on the basis of continuous measurements from 88 

remote sensors (Cintineo et al., 2013; Feng et al., 2011; Feng et al., 2012; Futyan and Del Genio, 89 

2007; Geerts, 1998; Hodges and Thorncroft, 1997; Liu et al., 2007; Machado et al., 1998). 90 

Objective tracking of deep convection has been applied to geostationary satellite data (Cintineo 91 

et al., 2013; Sieglaff et al., 2013; Walker et al., 2012) and Next Generation Weather Radar 92 

(NEXRAD) data (Haberlie and Ashley, 2019; Pinto et al., 2015) in the United States (US) over 93 

different periods. However, a long-term climatological data product of MCS and IDC events 94 

over the CONUS has heretofore not been developed. 95 

Here, building on the work by Feng et al. (2019), which developed an algorithm for MCS 96 

tracking and a dataset for MCSs for eastern CONUS, we produce a unified high-resolution data 97 

product of both MCS and IDC events and analyze their characteristics east of the Rocky 98 
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Mountains for 2004 – 2017. The data product is developed using the NCEP (National Centers for 99 

Environmental Prediction) / CPP (the Climate Prediction Center) L3 4 km Global Merged IR V1 100 

brightness temperature (Tb) dataset (Janowiak et al., 2017), the 3-D Gridded NEXRAD Radar 101 

(Gridrad) dataset (Homeyer and Bowman, 2017), the NCEP Stage IV precipitation dataset (Lin 102 

and Mitchell, 2005), and melting level heights from ERA5 (ECMWF, 2018). We produce the 103 

data product by applying an updated Flexible Object Tracker (FLEXTRKR) algorithm (Feng et 104 

al., 2018; Feng et al., 2019) and the Storm Labeling in Three Dimensions (SL3D) algorithm 105 

(Starzec et al., 2017) to the datasets mentioned above. Section 2 describes the updated 106 

FLEXTRKR and SL3D algorithms in detail, as well as the source datasets used by the 107 

algorithms. In Section 3, we first compare the climatological characteristics between MCS and 108 

IDC events based on the MCS/IDC data product. Then, as an application of the data product, we 109 

examine the spatiotemporal precipitation characteristics of MCS and IDC events. In Section 4, 110 

we discuss the uncertainties and limitations of the data product. Section 5 provides the 111 

availability information of the data product. Finally, we summarize the study in Section 6. 112 

2 Source datasets and algorithms 113 

2.1 Source datasets 114 

2.1.1 Merged 4-km Infrared brightness temperature dataset 115 

In this study, we identify cold clouds associated with MCSs and IDC by using the NOAA 116 

NCEP/CPP L3 half-hourly 4 km Global Merged IR V1 infrared Tb data for 2004 –  2017 117 

(Janowiak et al., 2017). The dataset is a combination of various geostationary IR satellites with 118 

parallax correction and viewing angle correction, therefore, providing continuous coverage 119 
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globally from 60°S – 60°N with a horizontal resolution of about 4 km and a temporal resolution 120 

of 0.5 hours (Janowiak et al., 2001). We only use the hourly Tb data in the FLEXTRKR 121 

algorithm discussed below, as all other datasets are only available at an hourly interval. 122 

2.1.2 Three-dimensional Gridded NEXRAD Radar (Gridrad) dataset 123 

Gridrad is an hourly 3-D radar reflectivity (ZH) mosaic combining individual NEXRAD 124 

radar observations to a Cartesian gridded dataset, with a horizontal resolution of 0.02° × 0.02° 125 

and a vertical resolution of 1 km. The dataset covers 115° W to 69° W in longitude, 25° N to 49° 126 

N in latitude, and 1 to 24 km in altitude above sea level (ASL). Homeyer and Bowman (2017) 127 

produced the dataset by applying a four-dimensional binning procedure to merge level-2 ZH data 128 

from 125 National Weather Service (NWS) NEXRAD weather radars to Gridrad grid boxes at 129 

analysis times. Only the level-2 observations within 300 km of each radar and 3.8 minutes of the 130 

analysis time were used in the binning procedure. The Gridrad ZH was the weighted average of 131 

the level-2 observations within the Gridrad grid boxes to reduce the potential loss of information. 132 

The weight calculation of each level-2 observation followed a Gaussian scheme in both space 133 

and time. Observation weight was negatively correlated with the distance of the observation from 134 

the source radar and the time difference between the observation and analysis time. The Gridrad 135 

dataset provides the total weight of the level-2 observations within each Gridrad grid box, which 136 

is useful for quality control. In addition, the number of level-2 radar observations (Nobs) and the 137 

number of level-2 radar observations with echoes (Necho) within each Gridrad grid box around 138 

analysis times (± 3.8 min) are also available in the Gridrad dataset. 139 

We obtain the Gridrad datasets between 2004 and 2017 from NCAR/UCAR Research Data 140 

Archive (RDA) (https://rda.ucar.edu/datasets/ds841.0/, last access: Jan 2, 2020). Following the 141 
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quality control criteria of Homeyer and Bowman (2017) (http://gridrad.org/software.html, last 142 

access: Jan 22, 2020), we remove potential low-quality observations, scanning artifacts, and non-143 

meteorological echoes from biological scatters and artifacts. Then we regrid Gridrad ZH onto the 144 

4 km satellite Merged IR grids by using the “bilinear” method from the Earth System Modeling 145 

Framework (ESMF) Python module (https://www.earthsystemcog.org/projects/esmpy/) as 146 

follows. 147 

 First, we convert the Gridrad logarithmic reflectivity ZH to linear reflectivity (Z’: mm6 m-3). 148 

We then set Z’ in grid boxes with radar observations but no echoes (Nobs > 0, but ZH = NAN; 149 

NAN, Not-A-Number) to 0 (Z’ = 0). Here the physical interpretation is that NEXRAD scans 150 

those grid boxes, but no detectable hydrometers return any echo. The primary motivation of this 151 

procedure is to avoid the reduction of the number of valid reflectivity values after re-gridding, as 152 

the ESMF bilinear method treats destination point as NAN as long as there is one NAN value in 153 

the source points. A common scenario is at the edge between hydrometeor echoes and clear air. 154 

Setting Z’ of those grid boxes having radar observations but no echoes to NAN would cause all 155 

surrounding destination points to become NAN even though all other source points have valid Z’ 156 

values, which would reduce the number of re-gridded valid ZH (ZH ≠ NAN) by about 20% for 157 

2004 – 2017. After the “bilinear” re-gridding of Z’, we convert the linear reflectivity Z’ back to 158 

the logarithmic reflectivity ZH. And we set ZH equal to NAN for those grid boxes with Z’ equal 159 

to 0. Now the NAN values are acceptable and won’t affect the SL3D algorithm and FLEXTRKR 160 

algorithm discussed below. 161 
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2.1.3 NCEP Stage IV precipitation dataset 162 

The NCEP Stage IV precipitation dataset provides hourly rain accumulations over polar 163 

stereographic grids across the CONUS with a resolution of 4.76 km at 60°N since 2002. The 164 

dataset is a mosaic of precipitation estimates from 12 River Forecast Centers (RFCs) over the 165 

CONUS (Stage IV data in Alaska and Puerto Rico are archived separately) (Lin and Mitchell, 166 

2005; Nelson et al., 2016). Each RFC produces its precipitation estimates through a combination 167 

of radar and rain gauge data based on the multisensory precipitation estimator (MPE) algorithm 168 

(for most RFCs), P3 algorithm (for Arkansas-Red basin RFC), or Mountain Mapper algorithm 169 

(for California-Nevada, Northwest, and Colorado-basin RFCs with missing radar-derived 170 

estimates) (Nelson et al., 2016). Some manual quality control steps are conducted to remove bad 171 

radar and gauge data before radar-gauge merging (Lin and Mitchell, 2005; Nelson et al., 2016). 172 

The Stage IV dataset has been widely used as a basis to evaluate model simulations, satellite 173 

precipitation estimates, and radar precipitation estimates (Davis et al., 2006; Gourley et al., 2011; 174 

Kalinga and Gan, 2010; Lopez, 2011; Yuan et al., 2008). Here, we obtain the hourly Stage IV 175 

precipitation for 2004 –- 2017 from the NCAR/UCAR RDA 176 

(https://rda.ucar.edu/datasets/ds507.5/, last access: Dec 28, 2019). We regrid the original Stage 177 

IV precipitation from polar stereographic grids to the 4 km satellite Merged IR grids by using the 178 

“neareststod” method from the ESMF ‘NCL’ module 179 

(https://www.ncl.ucar.edu/Applications/ESMF.shtml). 180 

2.1.4 ERA5 melting level dataset 181 

Melting hydrometeors produce intense radar echoes in a horizontal layer about 0.5 km thick 182 

located just below the 0°C level (melting level), which is known as “bright band” (Giangrande et 183 
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10 

al., 2008; Steiner et al., 1995). The bright-band signatures are often pronounced for stratiform 184 

precipitation, while convective precipitation produces well-defined vertical cores of maximum 185 

reflectivity, diluting bright-band signals (Giangrande et al., 2008; Steiner et al., 1995).  186 

Therefore, the SL3D algorithm that is described below examines ZH above the melting level to 187 

avoid the false identification of stratiform rain as convective (Starzec et al., 2017). In this study, 188 

we use the hourly melting level heights from the ERA5 reanalysis dataset. 189 

ERA5, as the successor to ERA-Interim, contains many modeling improvements and more 190 

observations based on 4D-Var data assimilation using Cycle 41r2 of the Integrated Forecasting 191 

System (IFS) at the European Centre for Medium-Range Weather Forecasts (ECMWF). ERA5 192 

provides hourly estimates of atmospheric variables at a horizontal resolution of 31 km and 137 193 

vertical levels from the surface to 0.01 hPa from 1979 to the present (Hersbach et al., 2019). We 194 

obtain ERA5 “Zero degree level” (melting level heights above ground) for 2004 – 2017 and 195 

“Orography” (geopotential at the ground surface) from the Climate Data Store (CDS) disks 196 

(ECMWF, 2018) (last access: Jan 24, 2020). The CDS archived ERA5 variables have been 197 

interpolated to regular latitude/longitude grids with a resolution of 0.25° × 0.25°. We calculate 198 

melting level heights ASL from “Zero degree level” and “Orography” (divided by 9.80665 m s-2 199 

to obtain ground surface height). Finally, we regrid the hourly 0.25° melting level heights ASL 200 

to the 4-km satellite Merged IR grids by using the ESMF “neareststod” method. 201 

We summarize the basic information of the four types of source datasets in Table S1. And, 202 

we define our data product domain as 110°W – 70°W in longitude and 25°N – 51°N in latitude 203 

(Figure 1), which covers the US east of the Rocky Mountains and excludes the western US. The 204 

domain coverage takes into consideration the availability of the GridRad radar dataset, the 205 
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11 

relatively scarce radar coverage over the Rocky Mountains, and associated uncertainties in radar-206 

based Stage IV precipitation estimates in complex terrains (Nelson et al., 2016). As shown in 207 

Figure 1, we further define four regions in the domain following Feng et al. (2019): Northern 208 

Great Plains (NGP), Southern Great Plains (SGP), Southeast (SE), and Northeast (NE). 209 

 210 

Figure 1. Data product domain and region definitions. Blue shading denotes the Northern Great 211 
Plains (NGP), green-yellow shading denotes the Southern Great Plains (SGP), light steel blue 212 
shading denotes the Southeast (SE), and orange shading denotes the Northeast (NE). The 213 
locations of some US states within each region are also labeled. TX is for Texas, OK for 214 
Oklahoma, KS for Kansas, NE for Nebraska, IA for Iowa, MO for Missouri, AR for Arkansas, 215 
LA for Louisiana, MS for Mississippi, AL for Alabama, TN for Tennessee, KY for Kentucky, 216 
and FL for Florida. 217 
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12 

2.2 Algorithm description 218 

2.2.1 SL3D algorithm 219 

The SL3D algorithm exploits Gridrad ZH to classify each grid column with radar echoes 220 

into five categories: convective, precipitating stratiform, non-precipitating stratiform, anvil, and 221 

convective updraft (Starzec et al., 2017). SL3D identifies these five categories successively 222 

following the criteria listed in Table S2. We run the SL3D algorithm for 2004 – 2017 by using 223 

the re-gridded ERA5 melting level heights and Gridrad ZH dataset described in Section 2.1. 224 

Figure 2e shows an example of the SL3D classification results based on Gridrad ZH (Figure 2d) 225 

at 2005-07-04T03:00:00Z. A sizeable convective system with intense radar echoes and 226 

precipitation is observed in Kansas, and many isolated convection events are also observed in the 227 

Southeast. The SL3D classification results will be used in the following FLEXTRKR algorithm 228 

to identify convective core features (CCFs, continuous updraft/convective areas with 229 

precipitation > 0 mm h-1; red regions in Figure S1) and precipitation features (PFs, continuous 230 

updraft/convective/precipitating-stratiform areas with precipitation > 1 mm h-1; green areas in 231 

Figure S1). 232 

2.2.2 MCS/IDC identification and tracking 233 

The FLEXTRKR algorithm was first developed and used by Feng et al. (2019) to track 234 

MCSs. In this study, we further update the algorithm so that it can identify and track MCS and 235 

IDC events simultaneously. 236 

Figure S1 displays the schematic of FLEXTRKR (Feng et al., 2019). The first step is to 237 

identify cold cloud systems (CCSs; continuous areas with Tb < 241 K) at each hour by applying a 238 
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multiple Tb threshold “detect and spread” approach (Futyan and Del Genio, 2007). We search for 239 

cold cloud cores with Tb < 225 K and spread the cold cloud cores to contiguous areas with Tb < 240 

241 K. Cloud systems that do not contain a cold cloud core but with Tb < 241 K are also labeled 241 

as long as they can form continuous areas with at least 64 km2 (4 pixels). In addition, as 242 

described in Feng et al. (2019), CCSs that share the same coherent precipitation feature are 243 

combined as a single CCS. A coherent precipitation feature is defined as continuous areas with 244 

smoothed ZH at 2 km > 28 dBZ (if ZH is not available at 2 km, use ZH at 3 km instead if it is 245 

available) (Feng et al., 2019). We use a 5 × 5 pixel moving window to smooth ZH. Figure 2b 246 

shows an example of the CCSs identified in the first step based on Tb at 2005-07-04T03:00:00Z. 247 

“Cloud 1” in Figure 2b corresponds to a large area of low Tb in the central US. 248 

In step 2, CCSs between two consecutive hours are linked if their spatial overlaps are > 249 

50%. “Linked” means the CCSs are considered to be from the same cloud systems. FLEXTRKR 250 

produces tracks by extending the link between two consecutive time steps to the entire tracking 251 

period, as shown in Figure S1. Each track represents the lifecycle of a cloud system. We 252 

calculate a series of CCS summary statistics associated with each track, such as CCS-based 253 

lifetime of the track (the duration of the track when CCSs are present), CCS area, CCS major 254 

axis length, CCS propagation speed, etc. Besides, SL3D classification (Figure 2e) and Stage IV 255 

precipitation (Figures 2c) within the tracked CCS are associated with the tracks and their merges 256 

and splits (described below). Then, we can obtain CCF and PF statistics of each track, such as 257 

convective and stratiform area, precipitation intensity and coverage, radar-derived echo-top 258 

heights, PF major axis length, CCF major axis length, intense convective cells (convective cells 259 

with reflectivity ≥ 45 dBZ and precipitation > 1 mm h-1; pink areas in Figure S1), etc. 260 
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Merging and splitting refer to situations when two or more CCSs are linked to one CCS 261 

between consecutive hours (Figures S2 and S3). A track associated with the largest CCS is 262 

defined as the main track (Figure S4), and smaller tracks from merges/splits are regarded as parts 263 

of the main track when calculating PF and CCF statistics. In the algorithm, we require that a 264 

“merge”/”split” track associated with an MCS/IDC event must have a CCS-based lifetime of no 265 

more than 5 hours. Otherwise, we treat it as an independent track. 266 

 The identification of MCS and IDC is based on the CCS, PF, and CCF statistics of the 267 

tracks. Following the definition of MCSs by Feng et al. (2019) (Figure S5), we define a track as 268 

an MCS if it satisfies the following criteria: 1) there is at least one pixel of cold cloud core 269 

during the whole lifecycle of the track; 2) CCS areas associated with the track surpass 60,000 270 

km2 for more than six continuous hours; 3) PF major axis length exceeding 100 km and intense 271 

convective cell areas of at least 16 km2 exist for more than five consecutive hours. Considering 272 

the potential impreciseness in the MCS definition (Geerts et al., 2017; Haberlie and Ashley, 273 

2019; Pinto et al., 2015; Prein et al., 2017), we evaluate the impact of different MCS definition 274 

criteria on the data product in Section 4.4. For the non-MCS tracks, we further identify IDC with 275 

the following two criteria (Figure S5): 1) a CCS with at least 64 km2 (4 pixels) is detected; 2) at 276 

least 1 hour during the lifecycle of the track when PF and CCF are present (PF and CCF major 277 

axis lengths ≥ 4 km). In addition, for each IDC event, the CCS-based lifetime of associated 278 

merge and split tracks cannot surpass the lifetime of the IDC event. Here, the IDC criteria denote 279 

a low limit in convective signals that we can identify by using the FLEXTRKR algorithm and 280 

given source datasets. Potential uncertainties associated with the limit are discussed in Section 281 

4.3. 282 
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Note that while we designate the term IDC to differentiate less organized convective storms 283 

from MCSs, there are sub-categories of deep convection within IDC. For example, multicellular 284 

convection systems that do not grow large enough or last long enough to meet our MCS 285 

definition are defined as IDC in our study, even though they are not necessarily “isolated.” Users 286 

of the data product can further separate sub-categories within IDC using the derived CCF 287 

statistics information to address specific science questions or research objectives. 288 

Finally, the FLEXTRKR algorithm maps MCS/IDC track information back to the domain 289 

pixels. Figures 2f – 2i give an example of the pixel-level MCS/IDC information. There, one can 290 

identify whether a pixel belongs to a track; if it does, what is the track number, whether the track 291 

is an MCS or IDC event, and whether the pixel has hourly accumulated precipitation > 1 mm or 292 

not. Together, the track-based CCS, PF, and CCF statistics of MCS and IDC events and the 293 

pixel-level dataset constitute the unified high-resolution MCS/IDC data product we develop in 294 

this study. Original Tb (Figure 2a), Stage IV precipitation (Figure 2c), Gridrad ZH at 2 km 295 

(Figure 2d), and Gridrad derived echo-top heights are also archived in the data product. 296 

We run the FLEXTRKR algorithm separately for each year from 2004 to 2017. The starting 297 

time of each continuous tracking is 00Z on 1 January, and the ending time is 23Z on 31 298 

December. Because winter has the fewest deep convection events, very few MCS/IDC events 299 

extend between two different years based on our investigation. Also, the lifetimes of MCS/IDC 300 

events are much shorter compared to our tracking period. Therefore, running FLEXTRKR 301 

separately for each year rather than continuously for the whole period has little impact on the 302 

MCS/IDC statistics. 303 
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 304 

Figure 2. FLEXTRKR pixel-level outputs at 03:00:00Z on July 4, 2005. (a) is satellite Tb. (b) 305 
shows identified CCS labels. CCS labels are unique at each hour. (c) is Stage IV hourly 306 
accumulated precipitation. (d) is Gridrad ZH at 2 km (if it is not available, ZH at 3 km is provided 307 
if it is available). (e) is the SL3D classification results. (f) displays the track numbers to which 308 
pixels belong. Here, the track numbers are not the real values in the MCS/IDC data product. The 309 
track numbers should be unique throughout the whole running period. We adjust the track 310 
numbers here to make the figure clear. Similar to “PF track number.” (g) gives information on 311 
whether the pixels belong to MCS (marked as 1) or IDC (marked as 2) tracks, which correspond 312 
to the tracks shown in (f). (h) also displays the track numbers to which the pixels belong, but 313 
only for pixels with precipitation > 1 mm h-1. (i) is like (g) but corresponds to (h). All these 314 
variables are stored in the FLEXTRKR hourly pixel-level output files. 315 
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3 Results and discussions 316 

3.1 Climatological characteristics of MCS and IDC events 317 

According to the MCS/IDC data product, we identify 45,346 IDC and 454 MCS events each 318 

year on average between 2004 and 2017 in our data product domain. Summer (June – August) 319 

has the most IDC and MCS events with average numbers of 25,073 and 212, while winter has 320 

the least with average quantities of 2,545 and 37. During spring and autumn, there are 8,543 and 321 

9,185 IDC events and 122 and 83 MCSs, respectively. 322 

We compare the climatological characteristics of MCS and IDC events in Table 1. MCSs 323 

have much longer lifetimes than IDC, averaging 21.1 hours (CCS-based) and 18.9 hours (PF-324 

based), compared to 2.1 hours (CCS-based) and 1.7 hours (PF-based) for IDC. Here, PF-based 325 

lifetime refers to the lifetime determined by the MCS/IDC PFs. Only those hours with a 326 

significant PF present (PF major axis length > 20 km for MCSs; ≥ 4 km for IDC) are counted 327 

during the lifecycle of an MCS/IDC event, which represent the active convective period of a 328 

storm. We find that MCSs have the longest PF lifetime in winter (21.3 hours) and the shortest in 329 

summer (17.9 hours). In comparison, IDC has the longest PF lifetime in winter (1.9 hours), but 330 

the summer lifetime (1.7 hours) is comparable to spring and autumn. We examine the seasonal 331 

cumulative distribution functions (CDFs) of PF lifetimes for MCS and IDC events for 2004 – 332 

2017 in Figure S6. Results show winter has the largest fraction of MCS/IDC events with longer 333 

lifetimes than other seasons. 334 

 As expected, MCSs are much larger than IDC events in spatial coverage and precipitation 335 

area, as shown in Table 1 by the comparisons of CCS area, PF area, convective/stratiform 336 
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precipitation area, etc. Generally, on average, winter MCS/IDC events are the largest in overall 337 

spatial coverage (both CCS and PF areas), while summer has the smallest. The remarkable 338 

seasonal difference in overall spatial coverage is mainly due to stratiform areas. Convective areas 339 

are much smaller than stratiform areas. The PF stratiform area of MCSs in winter is 90,513 km2, 340 

2.4  times larger than the area of 26,599 km2 in summer, but the PF convective area of MCSs in 341 

winter is 7,293 km2, 14% smaller than 8,465 km2 in summer. Similarly, the IDC PF stratiform 342 

area in winter is 3,182 km2, 2.8 times larger than 828 km2 in summer, while the IDC PF 343 

convective area in winter is 528 km2, slightly larger (9%) than 483 km2 in summer. Unlike 344 

stratiform areas, for MCSs, summer generally has the most intense convective activity than 345 

winter as indicated by a suite of CCF statistics, such as convective precipitation area, mean 346 

convective 20-dBZ echo-top height, major axis length of the largest CCF, etc. in Table 1. While 347 

for IDC, convective areas are comparable among all seasons. But for the most intense portion of 348 

convective cells, as shown by area with column max reflectivity (ZHmax) ≥ 45 dBZ, max 30-dBZ 349 

echo-top height, and max 40-dBZ echo-top height, summer IDC is still much stronger than those 350 

in winter. The more intense convective activity in summer than winter reflects stronger 351 

atmospheric instability in summer due to stronger solar radiation. We further confirm this point 352 

by investigating the MCS/IDC initiation time. As shown in Figure S7, most MCS and IDC 353 

events initiate in the afternoon of summer when atmospheric instability is the strongest. 354 

Although MCSs are much larger than IDC events in spatial coverage, proxies of their mean 355 

convective intensities such as the mean convective 20-dBZ echo-top heights are similar in Table 356 

1. And their PF mean convective and stratiform rain rates are also comparable. However, for the 357 

most intense convective cells, as indicated by the max 30/40-dBZ echo-top heights, MCSs are 358 

still much stronger than IDC events. PF mean convective and stratiform rain rates show 359 
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significant seasonal cycles for both MCS and IDC events. Summer MCS and IDC events have 360 

the largest rain rates, followed by autumn. Winter has the lowest rain rates compared to other 361 

seasons. 362 

The high-resolution nature of the MCS/IDC data product enables a detailed examination of 363 

the 3-D evolutions of MCS/IDC events to investigate the relationships between atmospheric 364 

environments and MCS/IDC characteristics and to examine the impacts of MCSs and IDC on 365 

hydrology, atmospheric chemistry, and severe weather hazards. The data product can also be 366 

used to evaluate and improve the representation of MCS/IDC processes in weather and climate 367 

models. As an example of the application of the MCS/IDC data product, in Section 3.2, we 368 

investigate the contributions of MCS and IDC events to precipitation east of the Rocky 369 

Mountains for 2004 – 2017. 370 

 371 
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3.2 Precipitation characteristics from different sources 385 

Here we only consider hourly data with precipitation > 1 mm h-1 (Feng et al., 2019). At 4 386 

km resolution, precipitation less than 1 mm h-1 accounts for less than 19% of the total 387 

precipitation, and the uncertainty of radar-derived precipitation at such low rainfall intensity is 388 

typically large. Including hourly data with precipitation ≤ 1 mm h-1 in the calculation will change 389 

the values shown in this study but will neither affect the comparison among MCS, IDC, and 390 

stratiform precipitation nor their spatial distribution patterns. Stratiform mentioned in this section 391 

refers to precipitation areas not associated with MCSs or IDC. Total precipitation is the sum of 392 

MCS, IDC, and stratiform precipitation. 393 

3.2.1 Annual spatial distributions of different types of precipitation 394 

According to the MCS/IDC data product, the annual average total precipitation east of the 395 

Rocky Mountains in the US (US grid cells in Figure 1) is 691 mm between 2004 and 2017 with a 396 

mean precipitation intensity of 3.6 mm h-1. MCSs contribute the most to the total precipitation 397 

with a fraction of 45%, followed by stratiform (30%) and IDC (25%). And the mean 398 

precipitation intensities of MCSs (4.4 mm h-1) and IDC (3.8 mm h-1) are much larger than 399 

stratiform (2.7 mm h-1). 400 

Figure 3 displays the spatial distributions of annual mean precipitation amounts and 401 

intensities for different precipitation types for 2004 – 2017. We also calculate the distributions of 402 

the fractions of different types of precipitation in Figure 4. MCS precipitation strongly affects the 403 

whole eastern US (105°W – 70°W, MCS precipitation fractions: 46% ± 12%), especially in the 404 

South Central US (MCS precipitation fractions: ~60%). IDC precipitation is concentrated in the 405 
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SE and NE coastal areas, with peak values in Florida. Stratiform precipitation is substantial in 406 

the eastern and southern regions with ample moisture supply and contributes over 35% to the 407 

total precipitation across most of the NE region. The coastal area near Louisiana, which is 408 

significantly affected by all three types of precipitation, has the most total precipitation with 409 

annual amounts of over 1,350 mm. The annual total precipitation amounts in most regions of SE 410 

also exceed 1,050 mm due to MCS contributions. While the total precipitation amounts in most 411 

regions of Florida are also over 1,050 mm, they are mainly attributed to IDC. 412 

The spatial patterns of precipitation intensities are somewhat different from those of 413 

precipitation amounts (Figure 3). Generally, the southern regions, especially in the coastal areas, 414 

have larger precipitation intensities than the northern areas. The MCS precipitation intensities are 415 

the largest in Texas, Louisiana, Oklahoma, and Kansas, significantly shifting west compared to 416 

MCS precipitation amounts. Unlike IDC precipitation amounts concentrating in the SE and NE 417 

coastal areas, IDC precipitation intensities are the largest over the SGP and SE. IDC precipitation 418 

intensities over the NE are much smaller compared to the SGP and SE, similar to stratiform 419 

precipitation intensities. We summarize the annual mean precipitation amounts and intensities of 420 

different types of precipitation in the NGP, SGP, SE, and NE in Table S3. 421 

The distributions of MCS/IDC precipitation amounts are mainly determined by the 422 

distributions of MCS/IDC hours (Figures 3 and 5). Here, the MCS/IDC hour of a grid cell during 423 

a period is the number of hours when any MCS/IDC events produce > 1 mm hourly accumulated 424 

rainfall in the grid cell. The distributions of MCS/IDC precipitation intensities, although not the 425 

main factor, can also affect the distributions of MCS/IDC precipitation amounts. For example, 426 

the maximum MCS hours are located around Missouri (Figures 5a), but the maximum MCS 427 
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precipitation amount is in the coastal area of Louisiana (Figure 3c). The larger MCS precipitation 428 

intensities in the southern regions contribute more to the MCS precipitation amount in the 429 

southern US. In addition, a large number of IDC events (IDC hours > 60 h yr-1) occur in the NE 430 

region along the Appalachian Mountains (Figure 5b), but IDC in that region only contributes to 431 

20% – 30% of the total precipitation amount (Figure 4b) due to the low precipitation intensities 432 

(Figure 3f). 433 
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 434 
Figure 3. Distributions of annual mean precipitation amounts (a, c, e, g) and intensities (b, d, f, h) 435 
for different types of precipitation for 2004 – 2017. (a) and (b) are for total precipitation, (c) and 436 
(d) are for MCS precipitation, (e) and (f) are for IDC precipitation, and (g) and (h) are for 437 
stratiform precipitation. We only include hourly data with precipitation > 1 mm h-1 in the 438 
calculation. 439 

 440 
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 441 
Figure 4. Distributions of the fractions of different types of precipitation (MCS, IDC, stratiform). 442 
Here, precipitation refers to annual mean values for 2004 – 2017. We exclude hourly data with 443 
precipitation ≤ 1 mm h-1 in the calculation. 444 
 445 
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 446 
Figure 5. Spatial distributions of annual mean MCS/IDC hours for 2004 – 2017. (a) is for MCS, 447 
and (b) is for IDC. The annual mean MCS/IDC hour of a grid cell is the number of hours per 448 
year when any MCS/IDC events produce > 1 mm hourly accumulated rainfall in the grid cell. 449 
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3.2.2 Seasonal spatial distributions of different types of precipitation 450 

Figures 6, S8, and S9 display the mean seasonal distributions of precipitation amounts, 451 

precipitation fractions, and precipitation intensities for different types of precipitation in 2004 – 452 

2017. The MCS precipitation center migrates northwards from Arkansas in spring to northern 453 

Missouri and Iowa in summer, followed by a southward migration to Louisiana in autumn, and 454 

finally to Mississippi and Alabama in the Southeast (Figures 6e – 6h) in winter. Spring and 455 

summer have much larger MCS precipitation amounts (~100 mm) than autumn (~62 mm) and 456 

winter (~50 mm). The mean MCS precipitation amount in spring is close to that in summer. 457 

However, the total number of identified MCSs in summer (212) is much higher than that in 458 

spring (122), as discussed in Section 3.1; and the mean MCS precipitation intensity in summer 459 

(5.2 mm h-1) is also larger than that in spring (4.1 mm h-1) (Figure S9). The inconsistency is 460 

because MCSs in spring occur in more favorable large-scale environments with strong baroclinic 461 

forcing and low-level moisture convergence (Feng et al., 2019; Song et al., 2019). As a result, 462 

spring MCSs are larger and longer-lasting, and they produce more rainfall per MCS event 463 

compared to those in summer (Table 1), compensating for the fewer number of MCS events and 464 

lower precipitation intensities in spring. Within the MCS precipitation center in spring and 465 

summer, MCS precipitation accounts for over 70% of the total precipitation amounts (Figures 466 

S8a – S8b). And due to the low precipitation amounts of IDC and stratiform, the fractions of 467 

MCS precipitation amounts in autumn and winter are also large, showing over 50% within the 468 

MCS precipitation center (Figures S8c – S8d). 469 

 The IDC precipitation amounts reach a maximum in summer, centered in the coastal areas 470 

of the SE, where IDC precipitation contributes to more than 40% of the total precipitation 471 
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amounts (Figures 6i – 6l and S8e – S8h). Winter has the least IDC precipitation. Areas of high 472 

IDC precipitation do not show much seasonal variability, suggesting that IDC is constrained by 473 

local conditions such as moisture availability, local solar radiation, and land-atmosphere 474 

interactions. The stratiform precipitation amount also peaks in summer, followed by autumn, 475 

particularly in the NE (Figures 6m – 6p). However, because both MCS and IDC precipitation 476 

amounts are very high in summer, the fraction of the stratiform precipitation amount in summer 477 

(28%) is smaller than that of winter (32%) (Figures S8i – S8l). Winter stratiform precipitation 478 

center occurs in the SE coastal areas (Figure 6p). 479 

 480 
Figure 6. Distributions of annual mean seasonal precipitation amounts for different types of 481 
precipitation for 2004 – 2017. The first row is for total precipitation, the second for MCS 482 
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precipitation, the third row for IDC precipitation, and the fourth row for stratiform precipitation. 483 
The first column shows spring precipitation, the second column for summer, the third column for 484 
autumn, and the fourth column for winter. MCS, IDC, and stratiform precipitation share the same 485 
label bar. We exclude hourly data with precipitation ≤ 1 mm h-1 in the calculation. 486 

The precipitation intensities of all three types peak in summer and reach minimums in 487 

winter (Figure S9). In each season, precipitation intensities in the south are larger than those in 488 

the north except for MCS precipitation intensities in summer, which maximize in Oklahoma. We 489 

summarize the mean seasonal precipitation amounts and intensities of different types of 490 

precipitation over the 4 climate regions of Figure 1 in Table S4. 491 

3.2.3 Diurnal cycles of different types of precipitation 492 

Figure 7 shows the monthly mean diurnal cycles of precipitation amounts from MCSs, IDC, 493 

and stratiform in the NGP, SGP, SE, and NE, respectively. Generally, MCS precipitation peaks 494 

during nighttime in the NGP, SGP, and NE. The seasonal shift of the peaks from spring in the 495 

SGP to summer in the NGP reflects the northward migration of the MCS precipitation center in 496 

the Great Plains (Figures 6e and 6f). 497 

The SE has significantly different diurnal cycles of MCS precipitation from other regions. 498 

In spring, SE MCS precipitation is mainly located in the western areas (Figure 6e), showing 499 

similar diurnal characteristics as the SGP MCS precipitation but with peaks in the early morning 500 

and late afternoon (Figures 7d and 7g). Besides, the SGP MCS precipitation peaks in May 501 

(Figure 7d), while SE peaks in April (Figure 7g), suggesting that the MCS precipitation center 502 

first appears in the western SE regions (Alabama, Mississippi, and Louisiana) in April, and then 503 

moves northwards to Arkansas in May. In summer, the SE MCS precipitation diurnal cycles are 504 

more like those of IDC (Figures 7g and 7h), peaking in the late afternoon. We find that most 505 
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summer MCS precipitation over the SE occurs near the coastal areas (Figure 6f), far from the 506 

MCS precipitation center in northern Missouri and Iowa, suggesting either a different MCS 507 

genesis mechanism in the SE from those in the SGP and NGP (Feng et al., 2019) or long-508 

duration deep convective systems showing MCS characteristics. In autumn, the SE MCS 509 

precipitation peaks in the morning (Figure 7g). The diurnal cycle of MCS precipitation in 510 

September shows mixed features of summer and autumn with peaks both in the morning and the 511 

afternoon. In winter months, the diurnal cycle of the SE MCS precipitation shifts from the 512 

autumn feature to the spring feature, with peaks shifting from the morning to the afternoon. 513 

The diurnal cycles of IDC precipitation are consistent in all regions (Figures 7b, 7e, 7h, and 514 

7k), peaking in the late afternoon in summer (Tian et al., 2005), again reflecting the impact of 515 

local instability driven by the solar forcing on IDC development. Stratiform precipitation 516 

(Figures 7c, 7f, 7i, and 7l) shows some diurnal cycle characteristics similar to IDC precipitation. 517 

It may be caused by the limitation of the temporal resolution of the datasets used in the 518 

FLEXTRKR algorithm. Weak IDC events that are shorter than 1 hour could be missed by 519 

Gridrad in identifying CCFs, as Gridrad ZH only considers reflectivities within ± 3.8 minutes of 520 

the analysis time. These weak IDC could be aliased to stratiform precipitation, therefore showing 521 

some similar diurnal cycles as IDC. Another possible reason is that the FLEXTRKR algorithm 522 

may miss some parts of IDC clouds with Tb ≥ 241 K, which are then classified as stratiform, so 523 

the stratiform precipitation exhibits some IDC characteristics. 524 

The monthly diurnal cycles of precipitation intensities for MCSs, IDC, and stratiform are 525 

generally similar among all regions, peaking in the late afternoon and early morning in the warm 526 

season (Figure S10). 527 
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 528 
Figure 7. Monthly mean diurnal cycles of precipitation amounts from MCSs (a, d, g, j), IDC (b, 529 
e, h, k), and stratiform (c, f, i, l) in the NGP (a, b, c), SGP (d, e, f), SE (g, h, i), and NE (j, k, l) 530 
during 2004 – 2017. 531 
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4 Uncertainties of the data product 532 

4.1 Uncertainties from source datasets 533 

The NCEP/CPP L3 4 km Global Merged IR V1 Tb dataset has been view-angle corrected 534 

and re-navigated for parallax (Janowiak et al., 2001) to reduce errors. However, the US continent 535 

is covered by two series of geostationary IR satellites (GOES-W and GEOS-E). During the 536 

production of the Tb dataset, the value with the smaller zenith angle is adopted when duplicate 537 

data are available in a grid pixel. Measurements from different satellites may be inconsistent. 538 

Janowiak et al. (2001) suggest this type of inconsistency to be considered minor. 539 

For the Gridrad radar dataset, some bad volumes have been removed during the production 540 

of Gridrad ZH. We further filter out potential low-quality observations, scanning artifacts, and 541 

non-meteorological echoes from biological scatters and artifacts following the approaches of 542 

Homeyer and Bowman (2017). However, there is another source of error from anomalous 543 

propagation caused by non-standard refractions of radar signals in the lower atmosphere, which 544 

cannot be mitigated during the filtering procedure. Non-standard refractions can result in 545 

underestimation or overestimation of the true radar beam altitude, thus affecting the location of 546 

radar reflectivity for binning. Estimating the corresponding uncertainties is out of the scope of 547 

this study. However, anomalous propagation is typically limited to radar beams traveling long 548 

distances in the boundary layer (Homeyer and Bowman, 2017). 549 

Stage IV precipitation is a mosaic of precipitation estimates based on a combination of 550 

NEXRAD and gauge data from 12 RFCs. Therefore, the errors of Stage IV are from several 551 

sources, such as inherent NEXRAD biases, radar quantitative precipitation estimate (QPE) 552 
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algorithm biases, bad gauge data removal inconsistency among different RFCs, multisensory 553 

processing algorithm inconsistency among different RFCs, and mosaicking border 554 

discontinuities (Nelson et al., 2016). The most severe errors occur in the western US, where 555 

NEXRAD data are limited, and a gauge-only rainfall estimation algorithm is used (Nelson et al., 556 

2016; Smalley et al., 2014). Hence our data product has a geographical focus east of the Rocky 557 

Mountains, with the best NEXRAD coverage in the US. After regridding the Stage IV 558 

precipitation into our 4-km domain, we further manually filter out certain “erroneous 559 

precipitation” hours and set all precipitation in those hours to missing values. “Erroneous 560 

precipitation” is defined as sudden appearance and disappearance of a large contiguous area (> 561 

4,800 km2) with intense precipitation (> 40 mm h-1) (Figure S11), which is physically not 562 

possible. There are 40 hours in total in the period 2004 – 2017 containing such “erroneous 563 

precipitation.” 564 

As the FLEXTRKR algorithm is applied to a combination of three independent types of 565 

remote sensing datasets, we identify the most robust MCS/IDC events satisfying all the criteria 566 

based on the three datasets. It reduces the potential false classification of tracks as MCSs or IDC 567 

based on any single dataset. And to consider the potential error of ERA5 melting level heights, 568 

we require ZH ≥ 45 dBZ above (Zmelt + 1) km for convective classification in the SL3D algorithm 569 

(Table S2). 570 

4.2 The impact of missing data 571 

In the CCS identification step of the FLEXTRKR algorithm, we require the fraction of 572 

missing satellite Tb in the domain at each hour to be less than 20%. Otherwise, the hour is 573 

excluded from our data product. During 2004 – 2017, we excluded 716 hours with missing 574 
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satellite Tb data, accounting for less than 0.6% of the total period. The year with the most 575 

missing satellite data is 2008, with 206 missing hours (2.3%), followed by 2004 with 154 hours 576 

(1.8%). All other years have no more than 57 missing hours. During the link procedure of the 577 

FLEXTRKR algorithm, we search the next hour if a missing hour is encountered, as long as the 578 

time gap between the two “linked” hours is less than 4 hours. Otherwise, we start new tracks 579 

from the next available hour. This method aims to reduce the impact of the missing hours. 580 

Considering the high completeness of the satellite Tb data in 2004 – 2017, we conclude that the 581 

missing satellite data have little effect on the data product. 582 

We show the distribution of the fractions of valid Stage IV precipitation data in 2004 – 2017 583 

in Figure S12. The fractions are over 97% for all grid cells of the US in the domain. Most grid 584 

cells in the US have less than 2% missing hours, which should have a negligible impact on the 585 

data product. 586 

Figure S13 shows the fractions of available Gridrad reflectivity data from 2004 to 2017 587 

between 1 km and 12 km ASL. The fractions are relatively high over the majority of the 588 

troposphere except for 1 km ASL. Based on the criteria of the SL3D algorithm, ZH at 1 km is 589 

rarely used and can be easily substituted by ZH at 2 km. Generally, Gridrad has good spatial 590 

coverage during the period with most grid cells east of the Rocky Mountains having fractions > 591 

90% between 2 and 9 km and 80% between 10 and 12 km. The completeness of the Gridrad 592 

dataset is relatively lower compared to the satellite Tb and Stage IV precipitation datasets, and 593 

Gridrad ZH is a crucial variable in the SL3D classification and MCS/IDC identification. 594 

Therefore, the missing data of Gridrad ZH should have some impacts on our data product. 595 
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However, as an advanced long-term high-resolution 3-D radar reflectivity dataset, Gridrad is 596 

valuable for constructing a climatological MCS/IDC data product. 597 

4.3 Temporal resolution limitation of the source datasets 598 

As we discussed in Section 3.2.3, the diurnal cycles of stratiform precipitation show some 599 

possible aliasing from IDC precipitation. Some weak IDC events are so short that the hourly data 600 

cannot properly capture their occurrence, especially for Gridrad ZH, which only includes 601 

reflectivities within ± 3.8 minutes of each hour. We calculate the cumulative distribution 602 

functions of PF-based lifetimes for MCS and IDC events and their associated precipitation in the 603 

data product for 2004 – 2017, as shown in Figure 8. About 75% of IDC events have a PF-based 604 

lifetime of 1 hour. Therefore, it is almost certain that we miss some IDC events shorter than 1 605 

hour in the data product. Here we give an estimate of the probability p that a given IDC event 606 

with a convective signal duration of x minutes is detected by radar, as expressed below: 607 

2 3.8

60
p

x


=

−
          (1) 608 

where the numerator is the time window of Gridrad observation in each hour, and x is the 609 

duration of the IDC event. The detection probability is only about 25% when x = 30 minutes. To 610 

obtain a detection probability of 50%, we require x ≥ 45 minutes. Hence, we cannot assess the 611 

distribution of IDC convective signals with durations less than 1 hour using the currently 612 

available datasets. Higher-resolution datasets, such as individual NEXRAD radar data, which 613 

typically has an update cycle of 4-5 min, are necessary to derive the information. However, as 614 

shown in Figure 8, we find that precipitation from IDC events with a 1-hour PF lifetime only 615 
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accounts for about 10% of the total IDC precipitation. Therefore, IDC events with PF lifetimes 616 

less than 1 hour should have a relatively small impact on precipitation. 617 

 618 
Figure 8. Cumulative distribution functions of PF-based lifetimes for MCS and IDC events and 619 
their associated precipitation in the data product domain for 2004 – 2017. The red solid line is for 620 
the number of MCSs, the red dash line for MCS associated precipitation, the blue solid line for 621 
the number of IDC events, and the blue dash line for IDC associated precipitation. 622 

4.4 The impact of MCS and IDC definition criteria 623 

The separation between MCSs and long-lasting IDC events is somewhat fuzzy (Feng et al., 624 

2019; Geerts et al., 2017; Haberlie and Ashley, 2019; Pinto et al., 2015; Prein et al., 2017). Here, 625 

we briefly examine the impact of different MCS/IDC definition criteria on the data product. We 626 

change the definition of MCSs to relax the CCS and PF size and duration thresholds. 627 

Specifically, the second and third criteria listed in Section 2.2.2 are modified as follows: 2) CCS 628 

areas associated with the track surpass 40,000 km2 for more than 4 continuous hours; 3) PF 629 

major axis length exceeding 80 km and intense convective cell areas ≥ 16 km2 exist for more 630 
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than 3 consecutive hours. And we also require that each merge/split-track associated with 631 

MCS/IDC events must have a CCS-based lifetime of no more than 3 hours. We keep the 632 

definition of IDC the same as described in Section 3.2.2, which is a limit for IDC that we can 633 

identify based on the source datasets. 634 

By using the new definition, as expected, the lifetimes and spatial coverages of MCSs are 635 

reduced, and those of IDC change little because most IDC events cannot satisfy the new MCS 636 

criteria (Tables 1 and S5). The annual number of MCSs identified in 2004 – 2017 increases from 637 

454 to 857. The number increases from 122 to 207 in spring, 212 to 434 in summer, 83 to 151 in 638 

autumn, and 37 to 62 in winter. As PF-based lifetimes of MCS/IDC events in summer are the 639 

shortest (Table 1), the new definition has the most significant impact in summer. The annual 640 

number of IDC decreases from 45,346 to 45,225. Reducing the merge/split lifetime limit retains 641 

more independent IDC events, which is the reason why the decrease in the number of IDC events 642 

is smaller than the increase in the number of MCSs. Annual mean MCS precipitation east of the 643 

Rocky Mountains increases from 313 mm to 353 mm, while IDC precipitation decreases from 644 

170 mm to 130 mm. The fraction of MCS precipitation only increases by 6% (from 45% to 645 

51%), compared to the almost doubling of MCS number (from 454 to 857), suggesting the MCS 646 

definition in the original data product is capable of capturing most of the important MCSs. 647 

Similar to MCS numbers, summer has the most increase in MCS precipitation amount, from 100 648 

mm to 119 mm. And annual mean MCS and IDC precipitation intensities decrease slightly as 649 

MCS precipitation intensities are somewhat larger than IDC in most regions (Tables S3, S4, S6, 650 

and S7). We summarize the regional precipitation statistics of the NGP, SGP, SE, and NE based 651 

on the new definition in Tables S6 and S7. 652 
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Although the new definition changes the absolute values of MCS/IDC characteristics, the 653 

contrast between MCS and IDC events is still present. The new definition has small impacts on 654 

the spatial distribution patterns of MCS/IDC precipitation. And stratiform precipitation 655 

characteristics are almost the same as before. Therefore, our original definition captures the 656 

essential characteristics of MCS and IDC events. In addition, the original data product is 657 

complete and flexible. We store all criteria variables of MCS/IDC events in the data product. 658 

Users can easily change the definition of MCSs and switch between tracks that are attributed to 659 

MCS and IDC without re-running the FLEXTRKR algorithm. There is no need to change the 660 

“track” and “merge” lifetime criterion as we do above because they have little impact on the 661 

climatological characteristics of MCS and IDC events. 662 

4.5 Recommendations for the usage of the MCS/IDC data product 663 

Considering the limitations and uncertainties mentioned above, we generally recommend 664 

using the data product for observational analyses and model evaluations of convection statistics 665 

and characteristics over relatively long periods such as a month, a season, or longer to fully take 666 

advantage of the long term dataset, although analysis of individual weather events is also 667 

possible as supported by the hourly temporal resolution of the data product. In addition, since the 668 

completeness and quality of the source radar dataset degrade dramatically beyond the US border 669 

and over the Rocky Mountains (Figure S13), we recommend the usage of the data product within 670 

the CONUS east of the Rocky Mountains to alleviate the impact of the termination of MCS/IDC 671 

tracks due to poor radar coverage and missing radar data beyond their maximum scan range. 672 

Detailed investigation of a short period or a specific MCS/IDC event is acceptable, but 673 

cautions should be taken when encountering missing data around the track during the period. 674 
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Due to the complexity of the algorithms used to develop the data product, it is difficult to 675 

quantify the impact of missing data on the MCS/IDC track. Therefore, we do not recommend 676 

examining a specific MCS/IDC track if there are too many missing data (precipitation, Tb, or ZH) 677 

along the track. Users planning to apply the data product for a specific case study should 678 

examine the availability of the source data first, which are also stored in the data product except 679 

for 3-D ZH due to the large data volume. Users can access the original 3-D ZH at 680 

https://rda.ucar.edu/datasets/ds841.0/ (Table S1). 681 

5 Data availability 682 

The high-resolution (4 km hourly) MCS/IDC data product and the corresponding user guide 683 

document are available at http://dx.doi.org/10.25584/1632005 (Li et al., 2020). The original 684 

format of the data files is NetCDF-4, and we archive them as compressed files for each year so 685 

that the data product is easily accessible. The user guide contains a brief explanation about the 686 

approach to develop the data product and a detailed description of the data file content to help 687 

users understand the data product. 688 

6 Conclusions 689 

Here we present a unified high-resolution (4 km, hourly) data product that describes the 690 

spatiotemporal characteristics of MCS and IDC events from 2004 to 2017 east of the Rocky 691 

Mountains over the CONUS. We produce the data product by applying an updated FLEXTRKR 692 

algorithm to the NCEP/CPP L3 4 km Global Merged IR V1 Tb dataset, ERA5 melting level 693 

heights, the 3-D Gridrad radar reflectivity dataset, and the Stage IV precipitation dataset. 694 

Climatological features of the MCS and IDC events from the data product are compared, with a 695 
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focus on their precipitation characteristics. Consistent with our definitions of MCSs and IDC in 696 

the FLEXTRKR algorithm, we find that MCSs have much broader spatial coverage and longer 697 

duration than IDC events. While there are many more frequent IDC occurrences than MCSs, the 698 

mean convective intensities of IDC events are comparable to those of MCSs. MCS and IDC 699 

events both contribute significantly to precipitation east of the Rocky Mountains but with distinct 700 

spatiotemporal variabilities. MCS precipitation affects most regions of the eastern US in all 701 

seasons, especially in spring and summer. The MCS precipitation center migrates northwards 702 

from Arkansas in spring to northern Missouri and Iowa in summer, followed by a southward 703 

migration to Louisiana in autumn, and finally to Mississippi and Alabama in the Southeast in 704 

winter. IDC precipitation mostly concentrates in the Southeast in summer. IDC precipitation 705 

shows a significant diurnal cycle in summer months with a peak around 16:00 – 17:00 Local 706 

Time over all regions east of the Rocky Mountains. In contrast, MCS precipitation peaks during 707 

nighttime in spring and summer for most regions except for the Southeast, where MCS 708 

precipitation peaks in the late afternoon in summer, similar to IDC precipitation. Lastly, we 709 

analyze the potential uncertainties of the data product and the sensitivity of the dataset to MCS 710 

definitions and give our recommendations for the usage of the data product. The data product 711 

will be useful for investigating the atmospheric environments and physical processes associated 712 

with convective systems, quantifying the impacts of convection on hydrology, atmospheric 713 

chemistry, severe weather hazards, and other aspects of the energy, water, and biogeochemical 714 

cycles, and improving the representation of convective processes in weather and climate models. 715 
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